
CALCULATION OF THE MOTION OF GASES AND HEAT TRANSFER IN THE AXIAL REGION 

OF A CYCLONIC FLOW 

S. V. Karpov UDC 533.6.011:536.244.45 

Methods are presented for calculating distributions of tangential velocity and 
static pressure and the lengthwise and radial heat transfer in the axial zone of 
a cyclonic flow. 

Most schemes and methods presently available for the aerodynamic design of cyclone and 
eddy devices, such as [1-3], presume the independence of the distribution of the tangential 
component of flow velocity on the longitudinal coordinate x. Attempts at numerical analysis 
of twisted flows in the axial region on the basis of the general equations of motion [4, 5] 
have not yet backed up the empirically established substantial deformation of the profile of 
w~, particularly with large values of dout and in sections near the outlet. This deformation 
is connected mainly with the effect of axial back flow. The available recommendations oncal- 
culating heat transfer in the axial zone of cyclone chambers, analyze~ in [6], make it possi- 
ble to evaluate only values of ~ averaged over the length of the heat-exchange surface; in 
several cases, the theoretical formfllas are inconvenient to use or do not have the necessary 
generality. Quite often this has to do with the fact that in forming the governing similitude 
numbers insufficient account is taken of flow features in the zone being analyzed. 

In solving dynamic and thermal problems, we use a cylindrical coordinate system with its 
origin in the plane of the outlet hole of a cyclone chamber ~Fig. i). The cyclonic flow in 
the core of the flow will be assumed to be axisymmetric. 

We assign the distribution of w~ with respect to r by an approximation having the form 

2N ~=(1+ ~) n, ( 1 )  

w h e r e  n a n d  ~ a r e  c o n s t a n t s .  

W i t h  n = 1 a n d  ~ = 2 ,  E q .  ( 1 )  c o r r e s p o n d s  t o  t h e  f a m i l i a r  V u l i s - - U s t i m e n k o  a p p r o x i m a t i o n  
[i]. (A similar form of the relation w = w(~) was established in studying rotational fluid 
motion in vortices [7, 8].) In the scheme in [2] for calculating the aerodynamics of unloaded 

X 

Fig. i. Diagram of the cyclone chamber. 
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Fig. 2. Radial distribution of ~x, w, u, and 
in the axial zone of a cyclone flow: a) solid 
line -- calculation by Eqs. (i) and (3); dashed 
line -- calculation by the method in [19]; test 
data: i) [13];2) [14]; 3) [15];4) [16]; 5) [9]; 6) 
[17]; 7) [18]; 8-12) author; b) calculation: 

1) by Eq. (i); 2) (15); 3) (16). 

~yclone chambers, the exponent n is determined from the condition of maximum circulation F = 
w~ on the boundary of the flow core ~c" Ilenceforth, a similar approximation, with allowance 
for the change to a new variable q* = (r -- rg)/(R~ m -- rg) was used to develop a method for 
the aerodynamic design of cyclone-vortex heaters [6]. 

Analysis of the empirical distributions of w~ with respect to the radius shows that they 
converge satisfactorily with the results calculated by Eq. (I) with allowance for the above- 
noted method of determining n only in the "quasipotential" flow region (i~ n ~. qc ). The 
calculation for the zone of "quasisolid" rotation is unsubstantiated and agrees poorly with 
the empirical data, especially over a large radial expanse up to rc = (0.7-0.9)R. The need 
to separately determine the exponent n for each zone was also indicated in [9, i0]. 

The study [ii] proposed a method of determining n to calculate w~ in the axial ~egion 
on the basis of the condition of the existence of a maximum of the angular velocity ~x 
reached on the radius 0 ~ n~ ~ 1 (Fig. i). With 

0n - O~L__\I+~"!J (2) 

1 + ~  
n = n ~ =  : - ( ~ -  1)n: (3) 

Equation (2) actually corresponds to the condition for stable rotation of a gas [12] in 
the axial region of a cyclonic flow, while the radius n~ is the boundary between the zones 
with a conservative (0 ~ q < q~) and active (q > n~) character of the effect of inertial 
body forces on the flow. 

To improve the convergence of the calculation with the experiment, including with limit' 
ing values "!m = 0, i, we propose to assign the value ~ = 1.87 instead of 2. 

Figure 2 shows graphs of the radial distribution of ~x in unloaded chambers calculated 
with allowance for Eqs. (i) and (3) in the rang e of qm from 0 to i, The figure also compares 
calculated curves of mx and w with our empirical data and data from several other studies 
[9, 13-18]. It can be seen from the figure that the calculated results agree well with the 
empirical results. 
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It was possible to establish the dependence of the characteristic radius n~ on fin, 
dout, L, and x from preliminary analysis of numerous empirical distributions of tangential 
velocity with different (including zero [19]) degrees of filling (loading) of the axial zone 
of a cyclone chamber with cylindrical inserts. An analytic relation connecting N~ with the 
main geometric parameters of the cyclone chamber and the longitudinal coordinate can be ob- 
tained by using a spiral flow model in the axial region [20]. 

Following [21], we write the vector equation of the mean motion of a viscous incompres- 
sible turbulent flow in the Helmholtz form, i.e., in the vorticity transport form: 

O<o> 
=VX(< V> x < o>)  + V X  (v 'xo ' )+W2< o> .  (4) 

at 
O<o> 

For steady spiral flow ~ =  0, < V > X (r ----0. Considering the relationship between the 
at 

pulsative and mean components of angular velocity ~' = I(3<~>/3r) (~ is the turbulence scale) 
in accordance with the vorticity transport theory of G. Taylor and condition (2) at r = r~, 
we have 

(Ore ---- 0and (V' X (0')m = 0. 

Thus, Eq. ( 4 ) ,  w r i t t e n  r e l a t i v e  to  mxm (we omit  the  a v e r a g i n g  symbols)  and r e p r e s e n t e d  i n  d i -  
m e n s i o n l e s s  form,  i s  s i m p l i f i e d  and becomes an e l l i p t i c  e q u a t i o n :  

a~2g + ng a~g + o~-- T o. (5) 
Using  Eqs.  (1) and ( 3 ) ,  we f i n d  

t+~o x 
- = 1 ( 2 % )  i - ( , - , )~ :_~  _ _ 2  (6) 

( s u b s t i t u t i o n  e r r o r  no g r e a t e r  t han  470). 

C o n s i d e r i n g  the  mutua l  i ndependence  o f  the  v a r i a b l e s  n$ and x, we can o b t a i n  t he  g e n e r a l  
solution of Eq. (5)_ relative to ~ by comparing two particular solutions [n~ = ~(x), ~g = 0; 
~ = ~(~g), 8~w/Sx = 0] on the basis of the boundary conditions of the problem. 

For chambers with a longitudinally distributed entry (see Fig. i): 

at ~lg ==0 and x----0 ~o=~p;  

at X ~ X l i  m llo = 0 ;  

at ~ g-~- 1 ~o-+ 1. 

As a r e s u l t  o f  the  s o l u t i o n ,  the  f o l l o w i n g  t h e o r e t i c a l  e x p r e s s i o n  was o b t a i n e d :  

2 
%,x = 1, 

1 + K x  In ~g 

where 

(7) 

(8)  

Kx = I - - 2  I X--X i  l - - X i  -F X i + I-----X~ JJ (9) 
l--X i I + ~]p 

is a coefficient considering the effect of the longitudinal coordinate on the distribution 
of w~ in the axial zone. 

o O Equation (8) is valid in the range ng ~ ~g ~ i, where ~g = 6.74-10 -3 ~ 0 is the limit- 
ing minimum degree of loading, chosen wit~ allowance for features of the solution and for its 
best agreement with the test data. 

When X i ~ X ~ i, the calculation is performed by (8) and (9). When 1 ~ X ~ Xk, it 
is performed by (8) with a value K x = Kli m = const. The latter corresponds to a similitudin- 
ous distribution w = w(n) along the chamber (the coordinate X). 

For unloaded cyclone units, with X i = 0 Eq. (8) is simplified: 
! 

-- I. (10) 
%'~ = 1 - -  X 

- - + X  
l + r l v  
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In cyclone chambers with a localized entry shifted toward the outlet hole, the boundary con- 
ditions are stated in a more complicated manner (Fig. 3a): 

at X----X o r l ~ = r l o ,  o; ( 1 1 )  

a t  X ~ Xl i  m ~1~ = O. 

Solution of Eq. (5) together with conditions (ii) leads to the following relation (~g = 0): 

at 0 ~ X ~ Xo 

I 

n'"= i--X/XO + X/X___.._s - -  1; (12) 
1 + ~lp I +~i,o. 

at Xo ~.~ X ~I 

(13) 
I + ~. -- I. 

~,x = X- X0 
I + ~!,,. I - -  Xo 

At X ~ i, n~,x = 0. 

Figure 3 shows a comparison of calculated and theoretical values of N~,x for the above- 
examined flow variants. In performing the calculations it was considered that, in accord- 
ance with the test data in [19, 22], 

r ~ / T o u  t = Tip/nou t = 0.79- - -  O. 122 fm/ fou  t ; 

~um/~q~,~8; ~o/~p ~ 1.85; n~./'qp ~, 1,3. (14) 

The scale values of W~m and r~m were determined in accordance with the recommendations in 
[23, 24]. 

It is known that the radial distribution of static pressure in a cyclonic flow is deter- 
mined mainly by the profile of w~. We can write the following in conformity with the equa- 
tion of radial equilibrium of a rotary flow. Here, we follow [2, 22], with allowance for the 
proposed method of determining the exponent n for the axial region 

2(I+~ x ) 

P=--2 I+~" . d~+C, (15) 

where C is the constant of integration; C = 0 when n = ~p for unloaded chambers; C = Pg when 
= ng for loaded chambers [6]. 

Figure 2b shows empirical distributions of tangential and axial velocity and static pres- 
sure in the plane of the outlet hole of a cyclone chamber (x = 0), as_well as calculated curves 
for w and P. It can be seen that in the region ofnegative values of u, where the rotary and 
axial components of velocity become commensurate, and as n § 0 w § 0, the effect of the law 
of radial equilibrium diminishes. This leads to stratification of curve 3 and the test data. 
Under these conditions, theoretical relation (15) can be roughly corrected to allow for the 
distribution of u in the range 0 <~. ~ ~ ~u by using the Bernoulli equation for spiral flow. 

Then 

= P~=0+ u'~. (16) 
To analyze the thermal problem, we will change over to a dimensionless form of Eq. (4), 

having taken mxm, to, and dg as the scale quantities: 

I ~ I - 

Ho aT = Re. V'C~ (17) 

It can be seen from Eq. (17) that using the dimensionless equation reveals that there are two 
governing similitude numbers: homochronicity (Strouhal), which is excluded for the steady- 
state problem being examined, and the angular Reynolds number: 

Re~ = ,m~,.d~ (18) 
'V 
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Fig. 3. Dependence of the dimension- 
less radius ~m,x on the longitudinal 
coordinate and the degree of loading: 
a) unloaded chamber: i) calculation 
by Eq. (i0); 2) (12); 3) (13); tests: 
4) distributed entry; 5) localized 
entry; b) loaded chamber: lines -- 
calculation by Eq. (8); points -- ex- 
periment: i) X = 0.6-0.8; 2) X > i. 

The local Reynolds number, with allowance for Eqs. 
sented as follows: 

Re~,x = 2ng(l * K~ In ~# Ream = 2Ng~xRe~m. 

The s i m i l i t u d e  e q u a t i o n  f o r  c a l c u l a t i n g  the  l o c a l  h e a t - t r a n s f e r  c o e f f i c i e n t s  
a l l o w a n c e  f o r  t h e  e f f e c t  o f  d i r e c t i o n  of  q) has  t h e  form 

ml m2 n Nu~ = Al~g ~ Re~,  (20) 

where At, ml, m=, and n are constants determined by analyzing empirical data. 

Similar to (20), in analyzing heat transfer in the theoretical expression for Nu I aver- 
aged over the length of the surafce ~g = X k -- Xi, we should introduce the mean integral value 
of the function Cx, calculated accordingly from the mean value of Kx: 

rg 

1 t'K,~tX. (21) Kl=Tg o 

(6) and (8) for ~xm and nm,x, will be repre- 

(19) 

(without 

Using Eq. (9), we obtain: 

at X i ~ X k ~ 1 

at X k ~ 1 

1 Fg 2 1--Xi + X  i l _ _ X i  Kt=--ff- 1 +  1 - - X i  l+~l---~ - -  ' 

I [ np (1--xi) ~ ] 
Kz=-~- ~p+1 ~ I . (23) 

Analysis of the available test data on convective heat transfer [25, 26] shows a good possi- 
bility of it being generalized from common positions when the above assumptions are used. 

It is of considerable interest to use integral methods of calculating the heat transfer 
of a cylinder in a twisted axisymmetric flow using data obtained earlier on the formation of 
the hydrodynamic and thermal boundary layers [27, 28]. The solution is based on the follow- 
ing integral relation for the thermal boundary layer: 
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d 6t'Y 

drg j w~dy  = q g , 
o pcp 

(24) 

where y = r -- rg. 

It was established experimentally that the boundary layer depends mainly on the coordi- 
nate ng. In the first approximation we assume that the wall boundary layer is thin and that 
its transverse curvature can be ignored [28], and that the distributions of w~ and ~ are de- 
scribed well by the power formulas 

= ; (25) 
Wh.y 

~z.y . (26) 

Having determined the shear stress and heat flux within the turbulent boundary layer by 
the formulas 

% g= p (v + ca)dw~/dy, 

q g = pap (a + 8q) d#/dy 

and having d iv ided  (28) by (27) wi th  a l lowance  for  the f a c t  t ha t  , << e~, a << ~q 
l e n t  core ,  we o b t a i n  the  r e l a t i o n  

= 1 (6h~h m # t . y .  (29) qg 

%{p At k 8t.y ) w,h.y 

The quantity W~h.y in Eq. (29) is best expressed through the characteristic velocity in the 
core of the cyclonic flow--w ~ m- using the solution of the dynamic problem. 

As in [27] the dimensionless thickness of the wall boundary layer ~h'y = ~h.y/dg is 
assumed to be a function of Re~m: ~- _ 8+v~z/~_ I 

Umy-- i / - 7 "  "~ ' (30) 

V 2 
where ~+ is the nominal thickness of the boundary layer; A and z are coefficients in the equa- 
tion for calculating the dimensionless friction coefficient: 

_ 2%g = ARe~.  (31) 
c! - -  pwSn 

With a l lowance  fo r  Eq. (30) ,  the  d imens ion less  r ad ius  Of the  e x t e r n a l  boundary of  the  h y d r o "  
dynamic boundary l a y e r  

28+ ReZ/2_l 
~h.y= (I + VF~2A )~g" (32) 

Inserting Eqs. (3) and (32) into (i) yields i 
l+"q~,x 

2(I + 26+l~Re~ -') ~z ]' l-{~-,}n~ 
Wq~h'Y'= 1 ~'(1 ~ - ' ~ f )  g'~l~J ,x W~. (33) 

With the prescription of specific numerical values of ~+, A, z, and x for the flow vari- 
ants with so-called "free" and "compressed" maxima of w~. [27], W~h.y is unambiguously deter, 
mined by the values of ng and X or Ig and Ream. Figure 4a presents a graphic interpretation 
of (33) for flow on the 'similitudinous section (X >i I) with a "compressed" maximum of w~. 
To simplify further calculations, the awkward expression (33) can be approximated by the sim- 
pler power relation 

=q~1.y= B ~ e ~  ~.,~p~, (34) 

where B and k are coefficients which in the general case depend on the friction law (31), X 
or Ig, and the range of Ream. 

(27) 

(28) 

in the turbu- 
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Fig. 4. Dependence of Wh.y on Ream 
and ng (a) and comparison of experi- 
mental data on the local (b) and 
mean (c, d) heat transfer of axi- 
symmetric cylinders against calcu- 

lated results: b) 1 --dou t = 0~ 
Ream = 1.32-105; 2 -- ~out = 0.6; 
R%m = 1.96"i05; ~ -- dou t = 0.7; 
Ream = 1.49"i05; d_ = 0.373 [26]; 
c) 1 calculationgby Eq. (37); 2, 
3 -- limiting laws of heat transfer; 
d) 4 -- calculation by Eq. (38). 

Having calculated the definite integral in the left slde of Eq. (24) with allowance 
for Eqs. (25), (26), and (34) and having performed certain transformations, we obtain a lin- 
ear differential equation 

where 

d~g ~ 8h.y ] 

1 ( 8t__~_. ]2m+ ~ E _  .0h-3/2~+~ 
= --g- Ne~m 

~g \ 8h.yJ ~g 

(35) 

2m + !, U ~ / 2  
E =  4 B~g+Pr t 

So lu t ion  of Eq. (35) makes i t  p o s s i b l e  to f ind  the r e l a t i o n  between the t h i cknesses  of the 
thermal and hydrodynamic boundary layers: 

I 2k--3/2z+l 
8t.y = [ E (  1 1 .)]2m+12 Re~ m2m+! (36) 
~h.y ClOg ~g 

o i s  the constant  of i n t e g r a t i o n .  Here, C1 = n g  

Having i n s e r t e d  (31) and (36) in to  (29) and having i s o l a t e d  Nu in  the  r i g h t  s i de ,  we 
obtain a formula to calculate the local or mean (over the length of the cylinder) heat trans- 
fer: 

2 B Pr t ~lg rlgTIg rig 4 B~6+Prtj 2ra+l R%m' (37) 

where 
n l +k - - z - -  m (2k - 3  ) = - -  z + l  . 

2m§  1 2 
Equation (37) was compared (Fig. 4b and c) with experimental data on local and mean 

,! ,, 
values of the numbers Nu. For the variant with a compressed maximum of w~ (Fig. 4c), the 
comparison was made with A = 0.234; m = 0.i; z = 0.4; ~+ = 270; Pr = 0.71; Pr t = 1. The value 
of Pr t evidently changes over the thickness of the boundary layer in the general case and 
depends on the degree of turbulence of the external (stream) flow. Thus, for the variant 
with the "free" maximum of we, the best agreement between the theoretical and empirical data 
is obtained at Pr t = 0.75-0.8. 
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It follows from Fig. 4b that the calculation of local values of Nu satisfactorily agrees 
with the experimental values in the core of the flow. 

The deviation seen in the end zones (at Ig = L) is due to specific features of the flow 
[26]. The dashed curves 2 and 3 in Fig. 4c correspond to the two limiting laws of heat trans- 
fer obtained from Eq. (37): 2 -- with decay of the stream boundary layer (at R~m ~ Re~ : 6" 
104W+h.y = W~m); 3 -- with decay of the wall boundary layer (at Re~m§ ~ ~h.y + 0, cf + 0). 

The effect of the degree of loading ~ on the mean heat transfer can be analyzed (Fig. 
4d), having represented (37) in dimensionl6ss form: 

1 I m 

= (38) 

I t  f o l l o w s  from Eq. (38) t h a t  w i t h  a d e c r e a s e  in  ng h e a t  t r a n s f e r  i n c r e a s e s :  w i t h  a d e c r e a s e  
i n  ng from 0 .8  to  0 . 6 ,  Ko I i n c r e a s e s  by a f a c t o r  of  1 . 3 .  

The s t a n d a r d  d e v i a t i o n  o f  the  e m p i r i c a l  p o i n t s  from the  t h e o r e t i c a l  c u r v e s  i s  no g r e a t e r  
than  • 

NOTATION 

R, D, L, radius, diameter, and length of the working volume of the cyclone chamber; r, x, 
running radius and longitudinal coordinate; 6, thickness of the boundary layer; ~ = r/r~m; 

= x/r~m, X = X/Xlim, dimensionless running radius and longitudinalcoordinate;d = d/D, 
dimensionless diameter; f = 4f/~D 2, dimensionless area; V, m, total linear and angular veloc- 
ity of the flow; w~, ~x, tangential component of the linear and axial component of the angular 
velocity of rotary flow; w, u, ~x' dimensionless (referred to W~m, ~x~=,) tangential and axial 
components of linear velocity and axial component of angular velocity; t, time; T, tempera= 
ture; ~ = Tg -- T, excess temperature; P = 2Pc/PW~m, dimensionless excess static pressure; rp = 
rn/R, ~p, ~u, dimensionless radii of zero excess static pressure and axial velocity component; 
q~ heat flux; P, Cp, ~, a, density, isobaric specific heat, kinematic viscosity, and diffusiv- 
ity; co, eq, turbulent analogs of ~, a; Pr, Prt, molecular Prandtl number and its turbulent 
analog; T~, tangential component of the shear stress; Ream = w~mdg/w, Nu = adg/l, Reynolds and 
Nusselt numbers. Indices: g, loading, value on the cylinder surface; in, out, inlet and outlet 
values; m, ~, values pertaining to the maximum value of the components of linear and angular 
velocity; c, value on the boundary cf the core of the flow; i, initial; k, final; lim, limit- 
ing; x, local; l, mean over the length; 0, nominal, zero; h.y, t.y, values on the boundaries 
of the hydrodynamic and thermal boundary layers; br, boundary; a bar above a quantity means 
that it is dimensionless, while a prime means that it is pulsative; a quantity in angular 
brackets is an average. 
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